Dielectric loss of beta-alumina polycrystalline ceramics of low Na₂ O content in 30–200 MHz band

B. KOSTRZEWA, J. DABKOWSKI, K. JASZCZYŃSKI, S. MINC

Chemistry Department, Warsaw University, Warsaw, Poland

Received 14 May 1982

Polycrystalline beta-alumina with Na₂O content below 5% has been investigated. The ceramic samples have been subjected to X-ray analysis and the electric parameters of the samples determined. The predominance of the α -Al₂O₃ form for ceramics of Na₂O content below 1.7%, and the predominance of the β -alumina form for ceramics of Na₂O content above 2% has been found.

1. Introduction

Using a polycrystalline β -alumina as a sensor in a mechanical-electrical transducer [1] poses different requirements than in the case of applying it as an ion-selective membrane [2-4]. The most essential features are hardness, appropriately selected ion conductivity and good stability during electrical and mechanical measurements.

The need to control the latter parameter turned attention on β -aluminas of less than stoichiometric sodium content and we have been investigating β -alumina and β -bis-alumina polycrystalline pellets with Na₂O content below 5%. Such pellets have been obtained by a diffusion method, introducing Na₂O to α -Al₂O₃ ceramics pellets [5]. The Na₂O quantity introduced was determined by weighing the samples before and after the diffusion process. The initial material was an alundum ceramic, α -Al₂O₃ of density higher than 95% of the theoretical value.

The ceramic samples received have been subjected to X-ray analysis and then the electric parameters of the samples were determined, utilizing among other methods, the Q-metric measurements of the quality factor and capacitance of resonance circuit containing the sample being investigated.

2. Experimental procedure

2.1. X-ray analysis

The crystallographic structure of the pellets was

determined by an X-ray analysis using the method of turned crystal using a Soviet apparatus 'Dron' 1 $(2\theta \operatorname{Cu} K\alpha)$.

2.2. Q-metric measurements

The quality factor and capacitance measurements have been carried out using a resonance method and the Q-meter type UMQL-3 with the investigated sample filling a capacitor included in the LC resonance circuit.

Because of the high conductivity of the samples and resulting low quality factor of the resonance circuit a two-layer structure was used between the capacitor plates: ceramics—air and ceramics— Teflon. A block-diagram of the Q-meter applied is shown in Fig. 1.

The Q-meter used had the following parameters; frequency, 30–200 MHz; quality factor, 30–300; capacitance, 20–80 pF. Using the measured values

Fig. 1. Block-diagram of the Q-meter. G, generator; L, inductance (measuring coil); C_x , capacitance (measuring and investigated capacitor); Q, voltmeter (quality factor); xQ, voltmeter (quality factor multiplier).

Fig. 5. Dependence of R_s as a function of frequency for β -alumina ceramics with varying Na₂O content.

Fig. 8. Dependence of $C_r(\epsilon')$ [1] as a function of Na₂O content for 50 MHz, 70 MHz and 120 MHz measuring frequencies.

Fig. 7. Dependence of $R_r(\rho)$ as a function of Na₂O content for 50 MHz, 70 MHz and 120 MHz measuring frequencies.

of capacitance, quality factor and geometric parameters of the capacitor containing the investigated sample the parameters of a R_sC_s series circuit, equivalent to the investigated β -alumina sample in both frequency response and Na₂O content, were calculated.

3. Results

Typical X-ray photographs of β -alumina pellets with different Na₂O content are shown in Fig. 2.

For ceramics of Na₂O content lower than 0.7% an α -Al₂O₃ form is dominating.

Ceramics of Na₂O content ranging from 0.7% to 1.7% are mixtures of alpha, beta-bis and beta forms. Some relative peak intensities for the beta form are too high which suggests deformation of the β -alumina crystallographic structure.

For ceramics of Na₂O content above 1.7%, the alpha form does not exist and the deformation of the β -alumina structure disappears [6-7].

The Q-metric measurement results after recalcu-

lation into R_s and $1/\omega C_s$ for an equivalent electric series circuit are shown in Figs. 3-6.

The dependences $R_s = \phi$ (%Na₂O) and $1/\omega C_s = \psi$ (%Na₂O) at constant frequencies indicate the presence of two distinctly different regions. For ceramics of Na₂O content lower than 2%, the variations of R_s and $1/\omega C_s$ are small whereas for ceramics of Na₂O content above 2% both R_s and $1/\omega C_s$ increase rapidly.

The frequency dependences of R_s and $1/\omega C_s$ demonstrate that, in the frequency range studied, neither Debay absorption nor resonance absorption is present.

Finally, the parameters of a R_sC_s series circuit after recalculation into R_r and C_r for an equivalent electric parallel circuit are shown in Figs. 7 and 8.

4. Conclusions

Both X-ray analysis and Q-metric measurements demonstrate:

(1) small variations of structure and electric parameters for ceramics of Na_2O content below 1.7%;

(2) a decrease in the importance of the α -Al₂O₃ form and an increase in the deformed β - and β -bis-alumina structure for ceramics of Na₂O content between 1.7% and 2%,

(3) the gradual vanishing of the β -bis form and simultaneous ordering of the beta-alumina structure for ceramics of Na₂O content above 2%.

The research also reveals the possibility of controlling the electric properties of manufactured, β -alumina ceramics and hence the optimization of these properties in order to utilize the mechanicalelectrical phenomena.

Acknowledgement

The authors are grateful to Dr Romana Anulewicz for making the X-ray photographs and useful discussions.

References

- K. Jaszczyński, J. Dąbkowski and S. Minc, Polish J. Chem. 54 (1980) 129.
- [2] W. Van Gool (ed.) 'Fast Ion Transport in Solids', North-Holland, New York (1973).
- [3] G. D. Mahan and W. L. Roth (eds.) 'Superionic Conductors', Plenum Press, New York (1976).
- P. Hagenmuller and W. Van Gool (eds.) 'Solid Electrolytes', Academic Press, New York (1978).
- [5] M. Yusushi and J. Shigern, *Japan Kokai* **13** (1976) 814.
- [6] P. E. D. Morgan, Mat. Bull. 11 (1976) 233.
- [7] M. Bettman and C. R. Peters, J. Phys. Chem. 7 (1969) 1774.